skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Macdonald, Alison M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Output from a high-resolution numerical model is used to study near-surface transport in and around Cape Cod Bay using a Lagrangian approach. Key questions include the following: What are the dominant transport pathways? How do they vary in time on seasonal-to-interannual scales? What is the role of wind in driving this variability? Application to a possible release of wastewater into Cape Cod Bay from the recently closed Pilgrim Nuclear Power Station is discussed. Analysis reveals a seasonality in Cape Cod Bay transport patterns, with shorter residence times throughout the bay and an increased probability of outflow waters exiting the bay during spring and summer. Wind-induced Ekman currents are identified as a dominant driver of this variability. Significance StatementThis study is motivated by a possible release of radioisotope-contaminated wastewater into Cape Cod Bay, a region important to fishing, aquaculture, and tourist industries. The specific aim is to better understand near-surface transport patterns and mechanisms in Cape Cod Bay both in general and within the context of a wastewater release from Pilgrim Nuclear Power Station. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract The western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes. 
    more » « less
  3. null (Ed.)
    Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)